Refine Your Search

Topic

Search Results

Technical Paper

Particle Emissions of a TDI-Engine with Different Lubrication Oils

2005-04-11
2005-01-1100
Due to increasing concern about health effects of fine and ultra-fine particles (nanoparticles) from combustion engines, the diesel particle filter technology (DPF) *) was extensively introduced to heavy duty and passenger cars in the last years. In this respect, a very important parameter is the irreversible plugging of the DPF with non-combustible ashes. The quality of lubrication oil, especially the ash content has a certain influence on regeneration intervals of diesel particle filters. In the present study, the effects of different lubrication oils on particle mass and nano-particle size distribution were investigated. The test engine was a modern diesel engine without particle filter system. A main goal was to find out, how different lubrication oils influence the particulate emissions and the contribution of oil to total particle emissions. Moreover, first results of a tracing study will be discussed.
Technical Paper

Impact of RME/Diesel Blends on Particle Formation, Particle Filtration and PAH Emissions

2005-04-11
2005-01-1728
Vegetable oils blended to Diesel fuel are becoming popular. Economic, ecological and even political reasons are cited to decrease dependence on mineral oil and improve CO2 balance. The chemical composition of these bio fuels is different from mineral fuel, having less carbon and much more oxygen. Hence, internal combustion of Diesel + RME (Rapeseed Methyl Ester) blends was tested with particular focus on nanoparticle emissions, particle filtration characteristics and PAH-emissions. Fuel economy and emissions of bus engines were investigated in traffic, on a test-rig during standardized cycles, and on the chassis dynamometer. Fuel compositions were varied from standard EN 590 Diesel with <50 ppm sulfur to RME blends of 15, 30, and 50%. Also 100 % RME was tested on the test-rig. Emissions were compared with and without CRT traps. The PAH profiles of PM were determined. Particles were counted and analyzed for size, surface, and composition, using SMPS, PAS, DC and Coulometry.
Technical Paper

Secondary Emissions Risk Assessment of Diesel Particulate Traps for Heavy Duty Applications

2005-01-19
2005-26-014
Most particulate traps efficiently retain soot of diesel engine exhaust but the potential hazard to form secondary emissions has to be controlled. The Diesel Particle Filter (DPF) regeneration is mainly supported by metal additives or metallic coatings. Certain noble or transition metals can support the formation of toxic secondary emissions such as Dioxins, Polycyclic Aromatic Hydrocarbons (PAH), Nitro-PAH or other volatile components. Furthermore, particulate trap associated with additive metals can penetrate through the filter system or coating metals can be released from coated systems. The VERT test procedure was especially developed to assess the potential risks of a formation of secondary pollutants in the trap. The present study gives an overview to the VERT test procedure. Aspects of suitability of different fuel additives and coating metals will be discussed and examples of trap and additive induced formation of toxic secondary emissions will be presented.
Technical Paper

Filtration of Diesel Soot Nanoparticles and Reliability in Swiss HDV Retrofitting

2005-01-19
2005-26-015
Based on the emission inventory Fig. 1, the Swiss 1998 Ordinance on Air Pollution Control (OAPC) mandates curtailment of carcinogenic diesel particle emissions at type B construction sites [1]. Moreover, particle traps are compulsory at underground workplaces [2]. In compliance, more than 6,000 Diesel engines were retrofitted with various particle trap systems. Many traps surpassed 99% filtration efficiency and secondary emissions were mostly prevented. However, trap failure due to mechanical and thermal damage was initially rather high at about 10%. By the year 2000 the failure rate was halved to about 6%. Thanks to focussed improvements, the year 2003 statistics show yearly failures of “only” about 2%. The Swiss target is to retrofit 15,000 construction machines with traps, fully compliant with environmental directives, having 5,000 operating hours durability and failure rates below 1%. Traps must pass the VERT suitability test before deployment.
Technical Paper

Particulate Traps for Construction Machines Properties and Field Experience

2000-06-19
2000-01-1923
1 Occupational Health Authorities in Germany and Switzerland require the use of particulate traps (PT) on construction machines used in underground and in tunneling since 1994. Swiss EPA has extended this requirement 1998 to all construction sites which are in or close to cities. During the VERT*-project, [1, 2, 3, 4, 5]**, traps systems were evaluated for this purpose and only those providing efficiencies over 95% for ultrafine particles < 200 nm have received official recommendation. 10 trap-systems are very popular now for these application, most of them for retrofitting existing engines. Efficiency data will be given as well as experience during a 2-years authority-controlled field test. LIEBHERR, producing their own Diesel engines in Switzerland and construction machines in Germany is the first company worldwide supplying particulate traps as OEM-feature (Original Equipment Manufacturing) on customers request.
Technical Paper

Particulate Traps Used in City-Buses in Switzerland

2000-06-19
2000-01-1927
1 Switzerland is enforcing the use of particulate traps for offroad applications like construction as well as for occupational health applications like tunneling. This decision is based on the results of the VERT-project (1994-1999), which included basic aerosol research, bench screening and field testing of promising solutions as well as the development of implementation tools like trap specification, certification scheems and field control measures. On the other hand there is no corresponding regulation for city-buses yet although PM 10 is about 2× above limit in most Swiss cities. Public pressure however is growing and city transport authorities have reacted by retrofitting Diesel city-buses instead of waiting for cleaner engine technology or CNG-conversions. The favored trap system with about 200 retrofits so far is the CRT.
Technical Paper

Best Available Technology for Emission Reduction of Small 4S-SI-Engines

1999-09-28
1999-01-3338
1 Small off-road 4-stroke SI-engines have extraordinarily high pollutant emissions. These must be curtailed to comply with the new Swiss clean air act LRV 98. The Swiss environmental protection agency (BUWAL) investigated the state of the technology. The aim was a cleaner agricultural walk behind mower with a 10kW 4-stroke SI-engine. Two engine designs were compared: side-valve and OHV. A commercially available 3-way catalytic converter system substantially curtailed emissions: In the ISO 8178 G test-cycle-average, HC was minimized to 8% and CO to 5% of raw emissions. At part load points, the residual emission was < 1%. Simultaneously, fuel consumption improved 10%. Using a special gasoline (Swiss standard SN 181 163), the aromatic hydrocarbons were curtailed, e.g. Benzene < 1%, and fuel consumption further improved. Those results were confirmed in field tests. The engine is approved for retrofitting.
Technical Paper

Particulate Traps for Retro-Fitting Construction Site Engines VERT: Final Measurements and Implementation

1999-03-01
1999-01-0116
1 The VERT project aimed at curtailing the construction site diesel emissions of ultra-fine particles to 1% of the raw emissions. Thus, compliance with occupational health legislation should be achieved. Particulate traps have attained this target. In contrast, engine tuning, reformulated fuels and oxidation catalytic converters are almost ineffective. This paper reports on the concluding project stage in which 10 traps were field tested during 2 years. Subsequent detailed measurements confirmed the excellent results: > 99% filtration rate was achieved in the nano-particulate range. The PAH, too, were very efficiently eliminated. Trap deployment becomes therefore imperative to fulfill VERT-targets.
Technical Paper

Sequential Multipoint Trans-Valve-Injection for Natural Gas Engines

1999-03-01
1999-01-0565
1 Sequential multipoint portinjection of compressed natural gas (CNG) offers several advantages to CNG-engines. With the Trans-Valve-Injection system (TVI) a high speed gas jet is pulsed from the intake port through the open intake valve into the combustion chamber, where it causes effects of turbulence and charge stratification particularly at engine part load operation. The system is able to diminish the cyclic variations and to expand the limit of lean operation of the engine. The flexibility of gas pulse timing offers the potential advantage of lower emissions and fuel consumption. The TVI-System including special two-stage injectors was developed at Lucerne School of Engineering. In the present project this system was tested on a 2.8 litre natural aspirated CNG-IVECO-engine, at the Biel School of Engineering, Switzerland.
X